Approximate dynamic programming with applications in multi-agent systems
نویسنده
چکیده
This thesis presents the development and implementation of approximate dynamic programming methods used to manage multi-agent systems. The purpose of this thesis is to develop an architectural framework and theoretical methods that enable an autonomous mission system to manage real-time multi-agent operations. To meet this goal, we begin by discussing aspects of the real-time multi-agent mission problem. Next, we formulate this problem as a Markov Decision Process (MDP) and present a system architecture designed to improve mission-level functional reliability through system self-awareness and adaptive mission planning. Since most multi-agent mission problems are computationally difficult to solve in real-time, approximation techniques are needed to find policies for these large-scale problems. Thus, we have developed theoretical methods used to find feasible solutions to large-scale optimization problems. More specifically, we investigate methods designed to automatically generate an approximation to the cost-to-go function using basis functions for a given MDP. Next, these these techniques are used by an autonomous mission system to manage multi-agent mission scenarios. Simulation results using these methods are provided for a large-scale mission problem. In addition, this thesis presents the implementation of techniques used to manage autonomous unmanned aerial vehicles (UAVs) performing persistent surveillance operations. We present an indoor multi-vehicle testbed called RAVEN (Real-time indoor Autonomous Vehicle test ENvironment) that was developed to study long-duration missions in a controlled environment. The RAVEN’s design allows researchers to focus on high-level tasks by autonomously managing the platform’s realistic air and ground vehicles during multi-vehicle operations, thus promoting the rapid prototyping of UAV technologies by flight testing new vehicle configurations and algorithms without redesigning vehicle hardware. Finally, using the RAVEN, we present flight test results from autonomous, extended mission tests using the technologies developed in this thesis. Flight results from a 24 hr, fully-autonomous air vehicle flight-recharge test and an autonomous, multi-vehicle extended mission test using small, electric-powered air vehicles are provided.
منابع مشابه
Adaptive Consensus Control for a Class of Non-affine MIMO Strict-Feedback Multi-Agent Systems with Time Delay
In this paper, the design of a distributed adaptive controller for a class of unknown non-affine MIMO strict-feedback multi agent systems with time delay has been performed under a directed graph. The controller design is based on dynamic surface control method. In the design process, radial basis function neural networks (RBFNNs) were employed to approximate the unknown nonlinear functions. S...
متن کاملMeasuring a Dynamic Efficiency Based on MONLP Model under DEA Control
Data envelopment analysis (DEA) is a common technique in measuring the relative efficiency of a set of decision making units (DMUs) with multiple inputs and multiple outputs. Standard DEA models are quite limited models, in the sense that they do not consider a DMU at different times. To resolve this problem, DEA models with dynamic structures have been proposed.In a recent pape...
متن کاملModern Computational Applications of Dynamic Programming
Computational dynamic programming, while of some use for situations typically encountered in industrial and systems engineering, has proved to be of much greater significance in many areas of computer science. We review some of these applications here.
متن کاملAdaptive neural control of nonlinear fractional order multi- agent systems in the presence of error constraintion
In this paper, the problem of fractional order multi-agent tracking control problem is considered. External disturbances, uncertainties, error constraints, transient response suitability and desirable response tracking problems are the challenges in this study. Because of these problems and challenges, an adaptive control and neural estimator approaches are used in this study. In the first part...
متن کاملAgent-based approach for cooperative scheduling
This paper studies the multi-factory production (MFP) network scheduling problem where a number of different individual factories join together to form a MFP network, in which these factories can operate more economically than operating individually. However, in such network which known as virtual production network with self-interested factories with transportation times, each individual facto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007